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Abstract: Voxel-based morphometry (VBM) is widely used as a high-resolution approach to under-
standing the relationship between anatomical structures and variables of interest. Controlling for the
false discovery rate (FDR) is an attractive choice for thresholding the resulting statistical maps and has
been commonly used in fMRI studies. However, we caution against the use of nonadaptive FDR con-
trol procedures, such as the most commonly used Benjamini–Hochberg procedure (B-H), in VBM anal-
yses. This is because, in VBM analyses, specific risk factors may be associated with volume change in a
global, rather than local, manner, which means the proportion of truly associated voxels among all vox-
els is large. In such a case, the achieved FDR obtained by nonadaptive procedures can be substantially
lower than the nominal, or controlled, level. Such conservatism deprives researchers of power for
detecting true associations. In this article, we advocate for the use of adaptive FDR control in VBM-type
analyses. Specifically, we examine two representative adaptive procedures: the two-stage step-up proce-
dure by Benjamini, Krieger and Yekutieli ([2006]: Biometrika 93:491–507) and the procedure of Storey and
Tibshirani ([2003]: Proc Natl Acad Sci USA 100:9440–9445). We demonstrate mathematically, with simula-
tions, and with a data example that these procedures provide improved performance over the B-H proce-
dure.HumBrainMapp 30:2304–2311, 2009. VVC 2008Wiley-Liss, Inc.
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INTRODUCTION

Voxel-by-voxel morphometric analysis of neuroimages is
a powerful analytic tool that allows researchers to evaluate
how brain structure is related to relevant risk factors and
to functional outcomes. For example, exposures to neuro-
toxicants, such as lead, may cause structural lesions in the
brain [Stewart et al., 2006]; aging or neurological disorders
may cause changes in neuro-anatomy [Honea et al., 2005];
and structural differences may explain variations in cogni-
tive ability [Mungas et al., 2005; Van Petten et al., 2004].
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Voxel-based morphometry (VBM) [Ashburner and Fris-
ton, 2000] is a high-resolution approach to evaluate such
questions. It proceeds by spatially normalizing each subject
image to a common reference image while retaining the
absolute volumes (or a proxy thereof) as voxel values.
Then a linear model (or generalized model) is fit at every
voxel which evaluates the relations between independent
variables of interest and volume at each voxel. In this way,
a VBM analysis simultaneously tests a large number of
hypotheses: whether or not the brain volume at each voxel
is associated with the variable of interest. The association
between volume and a covariate in a VBM study is analo-
gous to the signal in functional MRI (fMRI) studies.
Compared to traditional morphometric analyses that are

based on regions-of-interest (ROIs), the advantages of
VBM are that it is capable of detecting both global and
local associations without prior specification of ROIs for
analysis; it does not rely on arbitrarily predefined struc-
tures (often based on anatomic structural definitions); and
it evaluates all brain locations on equal footing. This has
led to a proliferation of studies that have applied VBM to
evaluate risk factors for volume loss, as well as studies
evaluating volume–function relations [Haier et al., 2005;
Kaasinen et al., 2005; Riello et al., 2005; Schwartz et al.,
2007; Spencer et al., 2006].
There has been little discussion about the issue of multi-

ple-hypothesis testing as specifically related to VBM. In
the context of fMRI studies, previous work has demon-
strated that procedures which control the false discovery
rate (FDR) have higher power, and the ability to have
data-driven, rather than prespecified fixed thresholds,
compared to those which control the family-wise error rate
(FWER) [Genovese et al., 2002; Logan and Rowe, 2004;
Marchini and Presanis, 2004]. The procedure for deriving
statistical maps for VBM is similar to that in fMRI studies.
However, in fMRI studies, the activation foci are often
small and local, whereas in VBM analyses, risk factors
may be associated with volume change in a global manner.
Here, we use ‘‘global’’ or ‘‘local’’ to describe the extent of
the association, or signal: the proportion of truly associated
voxels among all voxels being large (global) or small
(local). In other words, an association is global when the
associated area is extensive relative to the total brain vol-
ume. Therefore, the approach for thresholding VBM-based
statistical maps should differ from that from fMRI analy-
ses. In the remainder of this article, we thus focus on FDR
rather than FWER for VBM analyses; as declared in the
first FDR publication, ‘‘the potential for increase in power
is larger when more of the hypotheses are nontrue’’ [Benja-
mini and Hochberg, 1995].
The most commonly used analytic package, SPM, adopts

the nonadaptive linear step-up procedure, the Benjamini
and Hochberg (B-H) procedure [Benjamini and Hochberg,
1995; Benjamini and Yekutieli, 2001], for controlling FDR.
This implicitly assumes a localized association, specifically
a large proportion of truly null voxels. However, when
structural changes are global (thus a small proportion of

truly null voxels), or when the location of the specific
affected area is known a priori and the analysis is re-
stricted to that ROI, this procedure is too conservative, and
thus results in overcontrol of the FDR and reduced power.
In the sections to follow, we demonstrate the superiority
of adaptive procedures [Benjamini et al., 2006; Storey,
2002, 2003] over nonadaptive ones for researchers who
wish to control for FDR in VBM analyses. We include
mathematical, simulation-based, and empirical data-based
support to demonstrate why adaptive procedures are more
appropriate in this setting.

BACKGROUND

False Discovery Rate

FDR control is a relatively new notion of global error
control in multiple testing situations. Compared to FWER,
which is the probability of making at least one false rejec-
tion among all tests, FDR focuses on the proportion of
rejections that are false. It is less conservative and easy to
interpret and it offers an objective and data-driven per-
spective for thresholding statistical maps. Below we lay
out the notations and definitions to be used in this article.
Let m be the total number of voxels for which the hy-

pothesis is being tested. In VBM analyses, voxels for which
the null hypothesis is true are referred to as ‘‘not associ-
ated’’ (with the variable of interest), as opposed to ‘‘asso-
ciated.’’ The total number of ‘‘not associated’’ voxels, or
null voxels, is m0. The total number of truly associated
voxels is m1. When a significance threshold t is applied, all
voxels with P-values smaller than t are declared associ-
ated, i.e., rejected. The total number of rejections is R(t).
As summarized in Table I, the above data give rise to four
groups of voxels: correctly declared associated S(t), falsely
declared associated V(t), correctly declared not associated
m0 2 V(t), and falsely declared not associated m1 2 S(t).
The FDR refers to the expected proportion of falsely
declared-associated voxels among all voxels that are
declared associated [Benjamini and Hochberg, 1995]:

FDRðtÞ ¼ E
VðtÞ
RðtÞ

� �
¼ E

VðtÞ
RðtÞ jRðtÞ > 0

� �
Pr½RðtÞ > 0� ð1Þ

The first factor of (1), the expected fraction of false
rejections conditioning on any positive finding, is called

TABLE I. Classification of voxels, given a

significance threshold t

Declared
associated

Declared
not associated Total

Null true: not associated V(t) m0 2 V(t) m0

Alternative true: associated S(t) m1 2 S(t) m1

Total R(t) m 2 R(t) m
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positive FDR (pFDR) by Storey [2002]. The pFDR can be
interpreted as the posterior probability of the null hypoth-
esis being true when it is rejected. In neuroimaging set-
tings, pFDR is a close approximation of FDR: The second
factor in (1), under voxel independence, has Pr½RðtÞ > 0� ¼
1� Pr½RðtÞ ¼ 0� ¼ 1� ð1� Pr½voxel rejected�Þm � 1 when
m is large, even for very small probabilities of rejection.

Benjamini–Hochberg Procedure

The Benjamini–Hochberg (B-H) procedure is the first
and most commonly used procedure to control FDR [Ben-
jamini and Hochberg, 1995]. It offers a single-stage linear
step-up algorithm for controlling FDR at level q. Let pi
denote the P-values from the statistical map of m voxels,
i 5 1, . . ., m. We order the P-values in increasing order,
p(1) � p(2) � ��� � p(m). Let r be the largest i such that

pðiÞ � iq

m

then we reject all voxels whose P-value is less than p(r).

The p0 Factor

Benjamini and Hochberg [1995] proved that, by follow-
ing the above procedure, FDR ¼ E V

R

� � � m0

m q � q. Let
p0 ¼ m0

m denote the proportion of null voxels. From the in-
equality above, it is clear that the B-H procedure in fact
controls the FDR conservatively at p0q. This is close to the
nominal level of q only if p0 � 1, that is, the vast majority
of voxels are truly null. In neuroimaging, this requires that
the set of associated voxels constitutes a very small frac-
tion among all voxels. This is true for many fMRI studies
of brain activation, where it is believed, based on func-
tional biology, that there is an extremely localized neuro-
nal activity for many paradigms. However, in the analysis
of structural volumes, specific risk factors (e.g., lead,
aging) can be associated with volume loss in a relatively
large proportion of the brain [Mungas et al., 2005; Stewart
et al., 2006]. In such cases, the B-H procedure overcontrols
the FDR by a factor of 1/p0, resulting in a higher threshold
for significance, fewer discovered voxels, and, hence,
reduced power. The B-H procedure below was originally
developed based on the assumption of voxel independ-
ence, but later it was shown to be valid under certain posi-
tive dependence conditions [Storey et al., 2004]. This issue
of voxel dependence is expanded upon in the ‘‘Discussion’’
section.
If the null proportion p0 were known, then the B-H pro-

cedure with q0 5 q/p0 would control the FDR at the
desired level q. A number of procedures therefore seek to
improve power by incorporating a p0 or m0 estimation
step. Two general estimation approaches include using an
initial one-stage procedure to estimate m0, referred to as
two-stage step-up procedures (TSTs), and estimating
directly from the P-value distribution, referred to as

Storey’s estimators. Below we present one representative
procedure within each approach.

Two-Stage Step-Up Procedure

The procedure proposed by Benjamini et al. [2006, see
definition 6] includes an initial one-stage procedure to esti-
mate m0.

Step 1: Use the B-H linear step-up procedure at level q0

5 q/(1 1 q). Let r1 be the number of rejected hypothe-
ses. If r1 5 0 do not reject any hypothesis and stop; if
r1 5 m reject all m hypotheses and stop; otherwise con-
tinue.
Step 2: Let m̂0 5 m 2 r1.
Step 3: Use the linear step-up procedure with q* 5
q0m/m̂0.

The rationale for the above approach involves solving
the inequality

m0 � m� ðR� VÞ ð2Þ

where V is approximately equal to or less than qRm0/m.
There are variations to the two-stage procedure, for exam-
ple, one proposed by Benjamini and Hochberg [2000] and
several others proposed by Benjamini et al. [2006].
All of these procedures can be implemented with basic

programming skills.

Storey’s Procedure

Storey’s procedure estimates m0 directly from the P-
value distribution. Define the function I(.) to be 1 if the
statement between the parentheses is true, or 0 otherwise.
Then, as described in the work of Storey and Tibshirani
[2003], the proportion of null voxels can be estimated by

p̂0ðkÞ ¼

P
i¼1;:::;m

Iðpi > kÞ

mð1� kÞ ð3Þ

where k can be the median P-value or 0.5 [Storey, 2002;
Storey and Tibshirani, 2003]. The rationale behind this esti-
mation is that the null P-values should be uniformly dis-
tributed between 0 and 1. Expression (3) is the height of
this distribution (or the null proportion) if all P-values
greater than k were from the null. Since there will also be
some non-null P-values greater than k, the above estimate
should be on expectation greater than or equal to the null
proportion. As k gets closer to 1, more P-values should
come from the null. Storey and Tibshirani [2003] further
proposed a cubic spline-based approach to extrapolate (3)
to k 5 1. The corresponding procedure to control FDR at q
is as follows:

1. Calculate p̂0ðkÞ for a sequence of k values, e.g., 0,
0.01, 0.02, . . ., 0.95.
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2. Fit a natural cubic spline f̂ ðkÞ to the abovewith d5 3.
3. Let p̂0 ¼ f̂ ð1Þ.
4. Use the linear step-up procedure with q� ¼ q=p̂0.

This algorithm is more computer-intensive than the two-
stage step-up procedure. It is implemented in the package
QVALUE (http://faculty.washington.edu/jstorey/qvalue/).
Storey’s procedures have been frequently applied to high-
throughput genetics and genomics studies [Chesler et al.,
2005; Liu et al., 2006; Sahoo et al., 2007]. To our knowl-
edge, it has not yet been used in VBM imaging studies.
Storey et al. [2004, see sidenote] demonstrated that the

B-H procedure is the same as the Storey procedure using k
5 0 to estimate p0, i.e., using (3)

p̂0 � p̂0ðk ¼ 0Þ ¼

P
i¼1;:::;m

Iðpi > 0Þ

mð1� 0Þ ¼ m

m
¼ 1:

SIMULATION STUDY

To study and compare the performance of adaptive and
nonadaptive procedures, we conducted simulation experi-
ments in two-dimension space of 64 pixels by 64 pixels.
We assume that the shape of the imaged object roughly
resembled an axial view of a human brain with cerebral
spinal fluid visible at the center: donut-shaped with an
outer radius of 30 pixels and an inner radius of 10 pixels
(see Fig. 1). We then assumed that six areas within the
donut-shaped object are associated with a variable of inter-
est. The six areas were evenly spaced in the donut, each
circular in shape, with radius r.

In each simulation, the corresponding statistical maps
were generated as follows: The mean z-values in these
association areas were 23, 22, 21, 1, 2, and 3. Outside the
association areas, the z-values have a zero mean.
To study the effect of spatial correlation on the proce-

dures, we generated noise under three scenarios: (1) no
spatial correlation (white noise), (2) moderate spatial corre-
lation, and (3) strong spatial correlation. The spatially corre-
lated noise was generated by a Gaussian random field with
a Matérn autocorrelation function [Cressie, 1993]. The
Matérn autocorrelation function is a flexible parametric
form of autocorrelation functions with a smoothness param-
eter j and scale parameter / (also referred to as ‘‘range’’).
Both the exponential and Gaussian autocorrelation functions
are special cases of Matérn. The former corresponds to j 5
0.5 and the latter to j 5 1. To simulate dependence that
bears resemblance to that in actual statistical maps, we esti-
mated j and / from statistical maps derived in the real
data example later in this article. The estimated j was 1
(smoothness between exponential and Gaussian) and esti-
mated range / was approximately 2 pixel units (adjusted
for resolution). In Scenario 2 moderate correlation, the
Gaussian random field noise was generated using j 5 1
and / 5 2. In Scenario 3 strong correlation we used j 5 1
and / 5 4. In all three scenarios the noise standard devia-
tion was 1. This ensures that the P-values outside the asso-
ciated areas are always uniformly distributed. Fitting of the
autocorrelation function and Gaussian random field genera-
tion were performed using the R package geoR [Diggle
et al., 2003; Ribeiro Jr. and Diggle, 2001].
To explore a range of values for the null proportion p0

between 0 and 1, within each scenario, we performed four
sets of simulations with the radius of the association areas
r being 5, 7, 8.5 and 10, corresponding to decreasing p0
from 0.81 to 0.25. In each set of simulations, we independ-

Figure 1.

Simulation setup: A statistical map of z-values is simulated on a

donut-shaped background in two dimensions (the background

has an inner diameter of 20 pixels and outer diameter of 60).

The mean z-value in the background is 0. Six circular areas of

association have mean z-values 23, 22, 21, 1, 2, 3. The radius

of these areas is set at 5, 7, 8.5, and 10 (shown: 7). Additive

noise with standard deviation 1 is generated under three set-

tings: (a) No spatial correlation: Gaussian white noise. (b) Mod-

erate spatial correlation: Gaussian random field noise with a

range of 2 pixels. (c) Strong spatial correlation: Gaussian random

field noise with a range of 4 pixels.
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ently generated 1,000 realizations of the statistical map.
We then applied the unadjusted B-H procedure, the TST,
and Storey’s cubic spline-based procedure to control the
FDR at q 5 0.05.
Table II presents the comparison of the results averaged

over the 1,000 realizations. We present three quantities for
each simulation: the estimated null proportion p̂0, the
achieved FDR, and power. Power is defined as the propor-
tion of associated voxels that were correctly identified. In
all simulations, all procedures controlled the FDR to be
lower than the nominal level of q 5 0.05. Out of the three
procedures, Storey’s procedure always achieved an actual
FDR closest to the nominal level, TST the second, and B-H
always the most conservative. The power gain by using
Storey’s procedure is substantial, especially when p0 is far
from 1. The power gain is lower for TST, suggesting a
tendency to be conservative. This can be explained by the
adaptive procedures’ ability to estimate the null propor-
tion, and by the fact that Storey’s procedure offers a better
estimate p̂0 than TST. The conservativeness of TST can also
be seen by comparing inequality (2) to Table I: The left
side is smaller than the right by m1 2 S(t), or the propor-
tion of non-null voxels that are falsely declared as ‘‘not
associated.’’ This proportion may not be small when the P-
value distribution under the alternative hypothesis is
somewhat diffuse.
When r 5 10, even at a high noise level compared to the

signal, Storey’s procedure is powerful enough to detect
most of the signals from associated areas with a mean z-
value of 23 and 13, and about half from the 22 and 12
signals. In contrast, the B-H procedure could only detect
the signals at 3 and 23. This demonstrates that, in VBM
studies where an exposure causes global volume change,
the B-H procedure will result in a substantial reduction in

power, potentially making global volume change appear to
be local.
It is worth noting that the performances of all three tests

were not much affected by the extent of spatial correlation;
the actual FDR and power were very consistent across the
three scenarios of little correlation, moderate correlation,
and heavy correlation. This provides evidence for the va-
lidity of adaptive procedures under positive correlations.

DATA EXAMPLE

In this section, we present a realistic VBM analysis of
the association between brain volumes and cognitive func-
tion in a group of 510 healthy subjects as part of a large
study. It is the first study to use voxel-based volumetric
measures to study the relationship between brain structure
and a broad set of cognitive domains on a large number of
subjects. All subjects in this study were former lead work-
ers (male, 92.3% are White), with an average age of 56
years (standard deviation 7.7 years) at the time of MRI
[Schwartz et al., 2005, 2007; Stewart et al., 2006].
Volumetric measures were obtained using the HAM-

MER spatial registration method that retains absolute vol-
ume per voxel [Shen and Davatzikos, 2002]. In this
method, each scalp-stripped brain was automatically seg-
mented into anatomically defined ROIs, and then elasti-
cally registered to the Talairach stereotaxic coordinate
space based on the matching of a collection of geometric
attributes. The registration proceeds hierarchically to avoid
local maxima during matching. The resulting registration
was shown to be anatomically meaningful and highly
accurate compared to other existing methods. The original
volume was retained as voxel values [Davatzikos, 1996;
Davatzikos et al., 2001; Shen and Davatzikos, 2003]. Cogni-

TABLE II. Results from the simulation study in terms of the achieved false discovery rate and power

Radius (null proportion)

Estimated null proportion p̂0 False discovery rate Power

B-Ha TST Storey B-H TST Storey B-H TST Storey

No spatial dependence
5 (p0 5 0.81) 1 0.97 0.88 0.042 0.044 0.048 0.19 0.20 0.21
7 (p0 5 0.63) 1 0.91 0.76 0.034 0.037 0.044 0.26 0.28 0.30
8.5 (p0 5 0.46) 1 0.85 0.65 0.026 0.031 0.040 0.31 0.33 0.37
10 (p0 5 0.25) 1 0.76 0.52 0.016 0.021 0.031 0.35 0.39 0.45

Moderate spatial dependence
5 (p0 5 0.81) 1 0.97 0.88 0.042 0.043 0.048 0.19 0.20 0.21
7 (p0 5 0.63) 1 0.91 0.76 0.033 0.036 0.044 0.26 0.28 0.30
8.5 (p0 5 0.46) 1 0.85 0.65 0.026 0.030 0.040 0.31 0.33 0.37
10 (p0 5 0.25) 1 0.76 0.52 0.016 0.022 0.032 0.35 0.39 0.45

Strong spatial dependence
5 (p0 5 0.81) 1 0.97 0.87 0.038 0.040 0.048 0.19 0.20 0.21
7 (p0 5 0.63) 1 0.91 0.76 0.030 0.034 0.042 0.26 0.27 0.30
8.5 (p0 5 0.46) 1 0.85 0.65 0.024 0.029 0.039 0.31 0.33 0.37
10 (p0 5 0.25) 1 0.76 0.52 0.016 0.022 0.033 0.35 0.39 0.45

All procedures are performed to control the false discovery rate at a 5 0.05. At each prespecified size of the association circles (radius
of 5, 7, 8.5, and 10, corresponding to null proportions p0 of 0.81, 0.63, 0.46, and 0.25), for each of the three procedures, the result is an
average over 1,000 realizations.
a The Benjamini–Hochberg procedure assumes that the null proportion is always 1.
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tive function was measured for each subject within six
cognitive domains by their performance in a battery of
tests: Domain 1: visuo-construction; Domain 2: verbal
memory and learning; Domain 3: visual memory; Domain
4: executive function; Domain 5: eye-hand coordination;
and Domain 6: processing speed [Schwartz et al., 2000].
Using linear regression of voxel values (volume) on each

domain score separately, we obtained six statistical maps
of z-values, accounting for the following covariates: age,
first-time test taker, height, tobacco use, alcohol use,
hypertension, diabetes, and education. The hypothesis was
tested at each voxel whether a better domain score was
associated with a larger volume.
We controlled the proportion of falsely discovered vox-

els at 0.05 by applying the three procedures examined ear-
lier (the original B-H procedure, the TST procedure, and
Storey’s cubic spline-based procedure) to the statistical
maps. Table III presents the total number of discoveries
made by each procedure for each cognitive domain, and
the associated estimated null proportion p̂0. It can be seen
that the p̂0’s from Storey’s procedure were all smaller than
0.50, demonstrating that all cognitive domains (except Do-
main 2) are associated with brain structure globally, even
after adjusting for covariates such as age and height
(proxies for total brain volume). In these domains, the TST
procedure identified 15–26% more associated voxels than
the B-H procedure, and Storey’s procedure discovered 56–
147% more voxels than B-H. This gain of power can also
be clearly observed from the three-dimensional glass brain
projection of the association areas identified under each
method (see Fig. 2). The TST is fairly conservative compared
to Storey’s procedure as a result of overestimating p0.

DISCUSSION

In this article we introduced the use of adaptive proce-
dures for controlling FDR in VBM studies and showed
that they are more powerful than the nonadaptive B-H
procedure. The reason is that these procedures can esti-
mate the proportion of truly null hypotheses p0, which
may be much lower than 1 in VBM studies, while the
unadaptive procedure assumes it to be 1. We investigated
two approaches that are representative of existing adaptive
procedures: the TST by Benjamini et al. [2006] and Storey’s
cubic spline-based method (Storey and Tibshirani [2003]).
In both the simulation and data example, the adaptive pro-
cedures better controlled the FDR while improving power
over the B-H procedure. The power gain is particularly
substantial when using Storey’s method. It is likely due to
a more accurate estimation of p0. When p0 is in fact close
to 1, all procedures offer similar performance. Thus, the
general use of Storey’s q-value procedure seems appropri-
ate in VBM studies.
In both the simulation and the data example, we used a

stringent FDR control level of q 5 0.05. In the simulation
study, this gave rise to powers between 0.19 and 0.45. In
other settings, q 5 0.10 and 0.20 are frequently used,

which will lead to higher power. For example, when con-
trolling FDR at q 5 0.20 instead of 0.05, in the case of no
spatial dependence, radius of 10 and p0 5 0.25 (see Table
II), the powers of B-H, TST, and Storey’s procedures are
0.58, 0.68, and 0.72 instead of 0.35, 0.39, 0.45, respectively.
The reason that we used a stringent level in this report

is because, in VBM studies, many millions of hypotheses
are tested simultaneously, where traditional Bonferroni-
type FWER control methods yields extremely low power.
Therefore, even a very low q gives tremendous power gain
in comparison. Random field theory-based adjustment to
FWER control has been proposed, which increases some
power by estimating the number of effective voxels after
accounting for spatial correlation [Friston et al., 1991;
Worsley et al., 1992]. However, even with the random field
theory-based adjustment, the power of controlling the
FWER at 0.05 in the simulation study under any scenario
is between 0.01 and 0.05.
It is worth noting that simulations show that the adaptive

procedures work well when spatial correlation was present.
The B-H procedure was originally derived under the
assumptions that the m0 true null hypotheses are independ-
ent, and that the m0 true null P-values are uniformly dis-
tributed [Benjamini and Hochberg, 1995, appendix A], but a
later publication [Benjamini and Yekutieli, 2001] showed the
procedure’s validity for finite m for a form of positively de-
pendent P-values, called ‘‘positive regression dependence
on subsets.’’ Storey et al. [2004] proved the validity of both
the B-H and Storey procedures for m ? 1 with some more
general forms of weak dependence among the P-values.
However, others have opined [Logan and Rowe, 2004] that
this assumption may not be met in fMRI datasets. We there-
fore evaluated the spatial dependence in the statistical maps
in our VBM dataset. The original maps containing the vol-
ume measures had been smoothed using 10 mm3 FWHM.
We found the spatial correlation to be positive between vox-
els as far as 60 mm apart. The simulation study that repro-
duced similar and greater spatial correlation (Simulation
Scenarios 2 and 3) showed that all procedures are robust in
the presence of such correlation.

TABLE III. Comparison of real data analysis results for

the non-adaptive Benjamini-Hochberg (B-H) procedure,

the two-stage linear step-up procedure (TST), and

Storey’s cubic spline-based procedure (Storey)

Cognitive
domain

Number of discovered
voxels (million)

Estimated null
proportion p̂0

B-H TST Storey B-Ha TST Storey

D1 1.42 1.74 2.21 1 0.49 0.18
D2 0.00 0.00 0.00 1 1 1
D3 0.81 1.02 1.63 1 0.71 0.28
D4 1.13 1.39 1.86 1 0.60 0.25
D5 0.46 0.53 0.83 1 0.84 0.48
D6 0.43 0.50 1.06 1 0.85 0.39

a The B-H procedure does not estimate the null proportion and
assumes it to be 1.
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